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The problem of perturbations of excited states is discussed and three methods are developed. 
The first of these uses a zero order wave-function made up of a linear sum of singly excited SCF con- 
figurations, whereas the second uses just one of these configurations. The third method is restricted 
to small n-systems, the zero order wave-function being a linear sum of all possible determinants 
formed from the basis set used. The perturbations considered here are one-electron operators. Example 
calculations are performed on the butadiene molecule within the context of the n-electron approxima- 
tion. 

FOr das Problem einer St6rung yon Einelektronen-Operatoren fiir angeregte Zust~inde werden 
drei Verfahren vorgeschlagen: Erstens die Verwendung einer Zustandsfunktion nuUter Ordnung, 
die eine Linearkombination einfach angeregter SCF-Konfigurationen ist, zweitens die entsprechende 
Verwendung nur einer ausgewahlten Konfiguration. Drittens lal3t sich, wenn auch nur bei kleinen 
n-Elektronensystemen, als nullte N~iherung eine Linearkombination von allen m6glichen angeregten 
Konfigurationen verwenden. Als Beispiel wird das n-Elektronensystem des Butadiens gew~ihlt. 

Discussion du probl~me de perturbation pour les 6tats excit6s et d6veloppement de trois m6thodes. 
La premiere utilise une fonction d'ordre z6ro combinaison lin6aire de configurations SCF mono- 
excit6es, alors que la seconde utilise seulement une de ces configurations. La troisi6me re&bode est 
restreinte h de petits syst6mes r~, la fonction d'onde d'ordre z~ro 6rant une combinaison lin6aire de 
tousles d6terminants construits dans la base utilis6e. Les perturbations envisag6es ici sont constitutes 
par des op6rateurs mono61ectroniques. La mol6cule de butadi~ne sert d'exemple dans le cadre de 
l'approximation/t 61ectrons n. 

1. Introduction 

In  recent years there have been m a n y  appl icat ions  of pe r tu rba t ion  theory to 
molecular  systems. In  a lmost  all of these calculat ions only the g round  state of the 
molecule has been considered (see however Ref. [-1-3]). The rapid progress in 
experimental  technique,  par t icular ly  in the field of photochemistry,  where low 
lying electronically excited states are impor tan t ,  makes it increasingly necessary to 
extend pe r tu rba t ion  calculat ions from the g round  state to these excited states. 
The purpose  of this paper  is to under take  a pre l iminary  invest igat ion in to  the 
problems involved. 

It turns  out  that  the major  difficulty in developing a per tu rba t ion  expansion 
is to decide on a zero order wave-funct ion for the excited states. Unl ike  g round  
state calculations,  where the Har t ree -Fock  wave-funct ion forms an obvious and 
acceptable start ing point,  there is no definitive approximate  wave-funct ion for 
excited states. We have therefore considered two different forms. One  is a l inear 
sum of all singly excited configurat ions  which can be buil t  up from the Hartree- 
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Fock molecular orbitals; the second consists of just one of these. Clearly the 
development of a perturbation theory depends on which of these two forms is 
used; the second is in some ways easier to deal with theoretically but the first is 
probably more accurate and in some cases e.g. where there is near degeneracy, 
it is certainly the one to use. 

To illustrate these points we have made some simple n-electron type calcula- 
tions on trans-butadiene. There are three reasons for choosing to do such a 
calculation as a prototype: 

(a) being a n-electron calculation it is relatively easy to make and so the theory 
is not swamped by problems of a numerical nature, as would be the case of an 
ab- in i t io  calculation, (b)if  the theory is to be of use to experimentalists it will 
have to be applied to large conjugated systems where rc approximation is the only 
practical possibility and (c) for trans butadiene it is possible to obtain "exact" 
answers within the context of n-electron theory and these are available for com- 
parison. 

2. Perturbed Molecular Orbitals 

Consider a ground state wave function in the form of a Slater determinant 

~Po = lu~ c((1) u~ fl(2) ... u~ - i )  c((2n - I) u~ fl(2n)l, ( i) 

where the u ~ satisfy the Hartree-Fock equations 

F ouol = ~o u o ' (2) 

where 
F ~  Z { 2 [ - i ~ 1 7 6  [ _ i o l i o _ ] }  (3) 

i o e c  

and the notation of Ref. [4] has been used in Eq. (3) for Coulomb and exchange 
operators. Now suppose we perturb the original Hamiltonian by adding to it a 
sum of one electron operators 2 ~ z(i) .  Then the orbitals will change and to first 

and second order we have that 

(F o _ ~o) u, i = (e'i - F ' )  u ~ (4) 
and 

(F o _ ~o) u 2 = (~, _ F') u', + (~2 _ F 2) u o (5) 

with the normalisation conditions: 

(u',lu ~ + (u~ = 0, (6) 

( u 2 1 u  ~  + (u ' , [u ) )  + ( u ~  } ) = O, (7) 
where 

F' = z +  ~ {2[-i '1 _io3 + 2[_io1 - i ' ]  - I - i ' l l  ~ - 3  - [ - i ~  (8) 
ioee  

and, 
F2 = E {2[-i21 _io] +2[_ io1  _i2] + 2 [ _ i ,  I - i ' ]  - [ - i21i~ - ]  

i occ  

- [ -  i~ I/2 - ]  - [ - i ' l  i ' - 3 }  �9 (9) 
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Notice that here we use coupled Hartree-Fock perturbation theory and allow for 
the variation of the Coulomb and exchange terms when the orbitals change I-4, 5]. 

3. Excited States 

In general the Hartree-Fock operator has an infinite number of solutions. 
However, since in practical calculations F ~ is usually expressed in terms of a 
finite set of basis orbitals which has the effect of truncating the operator, only a 
small number of molecular orbitals are available for use in forming excited states. 
Let us suppose the basis set consists of m orbitals so that in solving (2) we also 
obtain rn molecular orbitals. The lowest n of these will be used for the ground 
state wave function so that there are ( m -  n) virtual orbitals. 

Singly excited configurations can be formed from the ground state by r~moving 
one of the ground state molecular orbitals and replacing it by a virtual orbital. 
Using the notation of Ref. [6] where ap, annihilates an occupied orbital Pi and a~ 
replaces it by a virtual orbital qi, both with e spin and similarly bp., and bqi + for fl 
spin we can define operators: 

1 
T(qi, Pi) =- ~-~-- (aq + api - b~, bp) ,  (10) 

1 
S(qi, p,)= + b2 b,) 1) 

which when acting on the ground state Hartree-Fock function, form singly 
excited triplet and singlet configurations. We shall use a single, upper case, index I 
to refer to the pair of integers (Pi, qi). Since there are n possible values for p~ and 
( m - n )  for qi, there will be n ( m - n )  possible singly excited configurations i.e. 
l <_I <_n(m-n).  

There are three possibilities to be considered if we are to use these configura- 
tions to form wave functions for excited states of molecules. Firstly one singly 
excited configuration by itself may be a reasonable approximation to an excited 
state. We shall term this a single configuration wave-function. Normally, however, 
this will not be satisfactory and we shall have to take a linear combination of the 
singly excited configurations to get a reasonable wave-function for the excited 
state. This we shall call a configuration interaction wave-function and to make it 
definite, we shall assume we have taken a linear combination of all the singly 
excited functions compatible with the basis used. The third possibility is that 
neither of these is satisfactory and that doubly excited and higher configurations 
have to be included. Although it would be possible to develop a perturbation 
theory which could allow for this we shall not do so here since we believe that 
the first two possibilities will cover most of the cases we are interested in. Moreover 
it will be recalled that, for the ground state, perturbation theory is usually based on 
Hartree-Fock wave-functions; the inclusion of singly excited configurations will 
not change this since, because of Brillouin's theorem [7], there is no interaction 
between the ground state and these configurations. However this is not the case 
when doubly excited configurations are included, so that, to be consistent, if we 
used these for excited state perturbation theory, we would then have to revise 
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ground state perturbation theory, and at the present time we are not prepared 
to do this. 

Thus there are two types of excited state wave functions we shall consider here: 
configuration interaction functions and single configuration functions. We now 
discuss in turn perturbation theories for each of these. 

4. Configuration Interaction Wave Functions 

The configuration interaction wave function for a singlet state will be 

~ps = ~ CiS(qi  ' Pi) IPo 
I 

and for the triplet state 

(12) 

q~r = ~ DlT(qi,  pi) ~Po . (13) 
I 

The coefficients C I and D/are  found by diagonalising the matrix elements of the 
total Hamiltonian between the singlet and triplet configurations. Denoting these 
matrices by H s and H r for the singlet and triplet states respectively, we have that 

H}j = (S(qi ,  Pi) ~o I a~l S(q~, p~) ~o) 
= ~ I j ( E G  + ~qi - -  ~m) (14) 

+ 2[piqjlqiPj] - [_Piqjl P j q J ,  

H~j = < T(q  i, p~) ~v o I o ~ l T ( q j ,  pj) ~Po> (15) 
= (~Ij(Ea + lzq,- er,) - [Piqj lPjqi] ,  

where Ea is the ground state Hartree-Fock energy, and the matrix elements in 
square brackets are with respect to 1/r12. Notice that because we are using mole- 
cular orbitals the matrix elements of F occur only along the diagonals of H s 
and H T. This is why we have used coupled perturbation theory to find the first and 
second order orbitals since it is only with these that we can use Eqs. (14) and (15). 

Now let us subject the molecule to an external perturbation, as in Sect. 2. The 
first effect of this will be to change the orbitals u~ and hence the singly excited 
configurations T(qi, Pi) ~po and S(q~, p~) ~po. Because of this and because the Hamil- 
tonian has changed the matrices H s and H T will also change. However, since we 
were careful to use coupled perturbation theory to find the perturbation correc- 
tions to the original molecular orbitals we can make a direct perturbation expan- 
sion of Eqs. (14) and (15). 

Thus we write 

H s = H s~ + 2 H  sl  + }c2H s2 + - (16) 

H r = H r~ + H r l  + }L2H r2 + - -  , (17) 

where, from (15), for example, 

1 H TM =6H(E~+aq, e~)-- o o o 1 o o 1 o 
- -  [_Pi qj I Pj qi ] --  [_Pi qj [Pj qi ] 

0 1 - [Pi qj I P ~  ~  - 1 o o 0 [P, qj IPj q, 7 .  (18) 
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The expressions for H r2, H s~, H s2 can similarly be obtained but they are rather 
cumbersome so we shall not write them out in full. Because of these changes in H s 
and H r the coefficients {CI} and {Dr} will also change. Notice, therefore, that the 
effect of the perturbation on the excited states according to this theory is com- 
pounded of two parts, i.e. both a change of the singly excited configuration basis 
functions and the coefficients multiplying them. 

Dropping the T and S superscript since the final development proceeds the 
same way for both, we have to solve the secular equation 

HC = EC (19) 

to find the energy. 'The usual perturbation results give us that 

E 1 o 1 () = ~ C~ HIjC s , (20) 
13 

0 1 1 0 2 0 E2 = Z (CI HuC~ + Ct HIjCJ),  (21) 
I J  

where {C/~ are the zero and first order coefficients in the expansion of to s or ~pr. 
The first order coefficients satisfy 

(H ~ - E~ C 1 = (E 11 - H 1) C ~ (22) 

together with the extra normalisation condition 

Z C~ C ~ -- O. (23) 
I 

5. Single Configuration Function 

Having developed the theory of configuration interaction function, that for 
the single configuration function can be deduced quite simply. Let us suppose 
the single configuration is S(q, p) ~o or T(q, p) ~o and that the index I is used for 
the pair (p, q). The original unperturbed energy for such functions will be just 
H s~ and H r~ Thus the first and second order corrections will be Hs{, Ht s / a n d  
H]x 1, Hf f  respectively. 

In general the zero order energy/ /~  will not be as accurate as zero order 
energy for the configuration interaction wave function. However the first and 
second order energies, in the single configuration case, do not depend on the zero 
order energy, as may be seen by examination of Eqs. (20), (21), and (23). Therefore 
to obtain an energy to second order, comparable with that energy obtained by the 
configuration interaction theory, we may redefine H~ so that both the single 
configuration and configuration interaction wave-function have the same zero 
order energy. 

6. Exact Perturbation Solutions for n-Systems 

For  small n-electron systems it is possible to find exact solutions for the first 
and second order energies within the context of the n-electron hamiltonian. For  a 
molecular system of 2n electrons a wave function gJ which is an eigenfunction 
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of S a with eigenvalue zero and  satisfies the Pauli  principle m a y  be expanded  in the 
form:  

7-' = S C [i, . . .  i ,  I j , . . .  J , ]  loci, ~ . . .  (oi,o~co3, f t . . .  o)j, fl I, (24) 

where the sum is over  all the set of  ordered integers 

i, . . .  i , , j ,  . . .  j ,  satisfying 1 < i 1 < i 2 ~ "" <= i n ~ n ,  

1 <--Jl NJ2 <"" <J. < n ,  

and {coi} are the l imited basis set of a tomic  orbitals used [8]. We wish to solve the 
equat ion:  

oYg ~g = e 7 j . (25) 

As we have  assumed semiempir ical  values for the integrals @)i(1) [ h(1) lcoj(1)> and 

(coi(1) co j(2) I ~ [ chin(l) co,(2)) [-9], the p rob lem reduces to diagonal isat ion of the 
F12 

hami l ton ian  mat r ix  with respect  to the configurat ions [ o9~, c~ . . .  e) i , ,ea)f l  . . .  coj,,fl I. 
In  this way we obta in  first excited singlet (or triplet) 7 j~ (say). We will denote 

the physical  eigenfunctions of the hami l ton ian  obta ined  in this way by {0r} where 
7 j~ = 0 m say. If we now per tu rb  the system by  W = 2~z ( i )  we obta in  the following 
equat ion  i 

7 *~ = E ~ 7 *~ , (26) 

(o/t" - E ~ 7 *~ -= (E 1 - W) ~po, (27) 

(,_gg - E ~ W 2 = (E 1 - W) Iivl + E 2 ~ T]2 . (28) 

F r o m  these are obta ined  

and 

E 2 ___ 

where 

E I = (71~ WI ~o) (29) 

(7"~176 (orlwI7 '~ 
* m ( E  ~ - e,) 

(30) 

o ~  Or = erO,.. (31) 

7.  R e s u l t s  a n d  D i s c u s s i o n  

F o r  butadiene we have c o m p u t e d  the values of E 1 and E 2 using the var ious 
methods  described in the paper .  We have  assumed tha t  the per tu rba t ion  is such 
that  the only non  zero elements are of the form (ogilz I ~oi) = 2f l ( f l  = - 4.78 eV) and 
thus cor respond  to the per tu rba t ion  acting at a t o m  i. This  is the type of per turba-  
t ion considered in the calculat ion of a t o m - a t o m  polarisabili t ies for g round  state 
systems [103. We  have considered the cases when the per turba t ion  is confined to 
one a t o m  (i.e. a t o m  1 or a t o m  2) and  also where it affects two different a toms  (all 
possible pairs). The  results are given in Table  1 and the energies are in electron 
volts. Because butadiene is an a l ternant  hyd roca rbon  it follows automat ica l ly  
tha t  E 1 is either 1 or 2 depending on the n u m b e r  of  ca rbon  sites affected by the 
per turbat ion.  
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If, first, we consider the CI and single configuration results we see that on the 
whole they agree bu t  there are some poor values. To some extent we believe that 
the agreement is a special property of the butadiene molecule, for in this particular 
case C O = C ~ = 0, and C O is approximately unity for both the triplet and singlet 
functions. Also if we consider the last five entries in Table 1, where the agreement 
is most pronounced, in these cases C~ = 0 for all 1. Thus the configuration inter- 
action functions and single configuration functions are almost the same. However 
in the case of the seventh entry in Table 1, there is considerable mixing of states 
and the single configuration function is not a good approximation to the CI 
function. Thus we consider that the configuration interaction method is the safest 
one to use although, for large systems, one may have to use the simpler method. 

A comparison between the CI and single configuration results and the exact 
values shows poor agreement indeed. The same sort of result has been found 
previously in calculations for the ground state of butadiene [11]. This, however, 
does not invalidate the non-exact values. It will be recalled that the semi-empirical 
integrals were originally obtained from a comparison between the experimental 

T a b l e  1 

P e r t u r b a t i o n  Singlet  o r  C I P T  Single  C I P T  E x a c t  P T  

at  a t o m  t r ip le t  E 1 E 2 E t E 2 E 1 E z 

1 T 1 - 0 . 0 2 6  1 - 0 . 0 3 1  1 - 0 . 0 1 9  
1 S 1 - 0 . 0 7 0  1 - 0 . 0 6 4  1 - 0 . 0 1 6  

2 T 1 - 0 . 0 4 6  1 - 0 . 0 1 6  1 - 0 . 0 4 2  
2 S 1 - 0 . 1 2 0  1 - 0 . 1 1 3  1 - 0 . 1 3 1  
1, 2 T 2 - 0 . 0 5 3  2 - 0 . 0 4 2  2 - 0 . 0 4 8  

1, 2 S 2 - 0 . 1 5 8  2 - 0 . 1 3 0  2 - 0 . 0 9 9  
2, 4 T 2 - 0 .047 2 - 0 .004 2 - 0.043 

2, 4 S 2 - 0 . 1 3 3  2 - 0 . 1 3 2  2 - 0 . 1 6 4  
1, 4 T 2 - 0 .047 2 - 0 .049 2 - 0 .032 

1, 4 S 2 - 0 . 0 9 1  2 - 0 . 0 9 1  2 - 0 . 0 3 0  
2, 3 T 2 - 0 .047 2 - 0 .049 2 - 0 .032 
2, 3 S 2 - 0 . 0 9 1  2 - 0 . 0 9 1  2 - 0 . 0 3 0  

T a b l e  2 

P e r t u r b a t i o n  Single t  o r  E(CI)  E P 
a t  a t o m  t r ip le t  

1 S - 36.325 --  36.326 
1 T - 39.720 - 39.719 

2 S - 3 6 . 3 7 5  - 3 6 . 3 7 6  
2 T - 39.741 - 39.739 
1, 2 S - 3 5 . 4 0 4  - 3 5 . 4 1 4  

1, 2 T - 38.747 - 38.746 
1, 4 S - 35.345 - 35.347 
1, 4 T - 3 8 . 7 3 8  - 3 8 . 7 4 0  
2, 3 S - 3 5 . 3 4 5  - 3 5 . 3 4 7  
2, 3 T - 38.738 - 38.746 
2 , 4  S - 3 5 . 3 8 7  - 3 5 . 3 8 9  
2, 4 T - 38.740 - 38.740 

19" 
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spectra of aromatics and excited state energies computed from CI functions. 
Thus although the CI perturbation results may disagree with the exact ones 
nevertheless from the point of view of comparison with experiment the former 
may be better. 

Finally to see how well the energy summed through second order agrees with a 
conventional calculation in Table 2 we give the perturbation energy E p = E ~ 
+ E 1 + E 2 with 2 = 1/I/~ I ~ 0.2. We have also computed the ordinary configuration 
interaction energy, E(CI) for the Hamiltonian 2/g + W, with singly excited SCF 
configurations. The agreement between the perturbation calculation and the 
straightforward configuration interaction calculation is very good. 
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